In-Space Remote Sensing

Revolutionary Aerospace Systems and Concepts (RASC)

Group 4

FY-02 Planning

October 2, 2001

Jeffrey Antol
NASA Langley Research Center

Introduction

 The primary objective is to develop revolutionary aerospace systems concepts for in-space remote sensing

• Scope: The study missions will include in-space remote sensing for Earth Observation, Space Exploration, and Comet and Asteroid Detection and Protection.

Overarching Mission

- The overarching mission is to use the revolutionary aerospace mission architectures and systems concepts as the foundation for identification of common technology and infrastructure requirements for in-space remote sensing
- Common technology areas exist between the current set of mission studies. Key technology areas will be assessed through additional focused assessments (when resources are available):
 - Formation flying
 - Inter-vehicle communications
 - Metrology
 - Autonomous operations
- Infrastructure requirements will be fed to the other RASC groups to provide input to their concept definitions as well as to leverage their analysis results

Relationship to Enterprise Goals

Space Science Enterprise

- Goal 1: Chart the evolution of the universe, from origins to destiny, and understand its galaxies, stars, planets and life
- Goal 3: Develop new technologies to enable innovative, less expensive flight missions

Earth Science Enterprise

- Goal 1: Observe, understand, and model the Earth system to learn how it is changing, and the consequences for life on Earth
- Goal 3: Develop and adopt advanced technologies to enable mission success and serve national priorities

Aerospace Technology Enterprise

Goal 3: Pioneer technology innovation: enable a revolution in aerospace systems

Study Missions

- The study missions currently include Earth observation, space exploration, and comet and asteroid detection and protection systems/architectures:
 - Space Based Imaging Interferometry
 - Fresnel Lens System for Gamma Ray Astronomy: Micro-arcsecond Imaging of Black Hole Event Horizons
 - Study of Revolutionary Earth Sciences Architecture for Atmospheric Chemistry, Earth Radiation Balance, and Geomagnetism Measurements
 - Comet and Asteroid Protection System (CAPS)
 - Planetary Body Maneuvering

Space Based Imaging Interferometry

- David Leisawitz, GSFC
- Evaluation of space-based imaging interferometry
- Michaelson and Fizeau interferometers installed on booms, tethers, and free flyers will be assessed to meet Code S and Code M key science objectives
- Alternative architectures for space-based imaging will be developed as well as analytical tools, decision trees and performance metrics for facilitating mission design

- Fresnel Lens System for Gamma Ray Astronomy: Microarcsecond Imaging of Black Hole Event Horizons
 - Neil Gehrels, GSFC
 - Assessment of a mission concept that includes a Fresnel lens on one spacecraft and a gamma-ray detector on a second spacecraft with approximately 10,000,000 km distance between them
 - Station keeping, propulsion, needs, orbital dynamics, target acquisition concepts, and formation flying will be addressed

- Study of Revolutionary Earth Sciences Architecture for Atmospheric Chemistry, Earth Radiation Balance, and Geomagnetism Measurements
 - Dr. Shahid Habib, GSFC
 - A range of advanced platforms required for making Earth science measurements in the upper stratosphere will be investigated
 - The revolutionary technologies necessary for each platform needed to make the desired measurements will be identified

- Comet and Asteroid Protection System (CAPS)
 - Dan Mazanek, LaRC
 - Focus will be on the preliminary definition of CAPS detection concepts,
 Near-Earth Objects (NEO) orbit modifications, and an overall architectural concept for CAPS implementation
 - Detailed systems analysis of the detection system will be performed to identify critical technology pull requirements

Planetary Body Maneuvering

- Dr. George Schmidt, MSFC
- The objective is to examine simple, medium, and advanced techniques for moving small planetary bodies
- The application of the associated techniques could range from commercial space operations to planetary defense

Relationships Between Study Missions

 Each of the five planned Group 4 study missions will be standalone activities; however, results of several studies will feed other Group 4 studies as well as assessments of common technologies

Study Missions Relationship to Wavelength

	Space Based Imaging Interferometry	Fresnel Lens System for Gamma Ray Astronomy	CAPS
Microwave			
Infrared	Х		Х
Visible	Х		Х
Ultraviolet	Х		
X-Ray	Х		
Gamma-Ray		Х	_

Summary

- Technologies and infrastructure for conducting revolutionary inspace remote sensing will be investigated
- The study missions currently include Earth observation, space exploration, and comet and asteroid detection and protection
- Key technology areas will be assessed through additional focused assessments (when resources are available):
 - Formation flying
 - Inter-vehicle communications
 - Metrology
 - Autonomous operations
- Infrastructure requirements will be input to other RASC groups and the associated results will be leveraged